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Abstract The loading of biomolecules on nanoparticles might be thought of as a
first step to design a cargo in drug delivery system. Here, we study a quantity of
bovine serum albumin (BSA) surrounding the silica nanoparticle. The silica nanopar-
ticle is modeled as a perfect sphere whereas the BSA is represented by an ellipsoid.
On utilizing a continuous approximation, the electrostatic and van der Waals inter-
actions can be analytically expressed. Further, a number of BSA molecules coat-
ing on the nanoparticles of various sizes can be simply determined as a function
of the protein ring radius. Our finding is in a good agreement found in experiment
and this can be a guide to evaluate the number of protein on other type of spherical
nanoparticles.

Keywords Bovine serum albumin · Silica nanoparticle · Lennard-Jones function ·
Coulombic function

1 Introduction

The integration of nanoparticles with biomolecules may yield novel hybrid nanobio-
materials of combined properties and functions arising from the unique physical and
chemical properties of nanoparticles and the unique recognition by cell of biomate-
rials. There is a growing knowledge that the fundamental interactions of nanoscale
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objects with living substance play a major role in nanomedicine, as well as in terms of
nanosafety issue [1]. For this reason the study of the nanoparticles coated by protein
as a protein corona might be thought of as a first step to create drug or gene delivery
systems.

In biomedical field, silica nanoparticles may serve as a delivery system for drugs
and genes [2,3]. For example, DNA can be functionalized on the surface of silica
nanoparticles and is transported into animal tissues [4–9]. Moreover, these nanopar-
ticles may bind to drugs and serve as a cargo to deliver such molecules to the tar-
geted cells [3,10–12]. In particular, Schübbe et al. [13] investigated the location
of SiO2 nanoparticles of 32 and 83 nm in diameters in Caco-2 cells as a model of
human intestinal cells, and they found that silica of both sizes can enter into the cyto-
plasm. With increasing incubation time, the particles move towards the nucleus of the
cells.

Bovine serum albumin (BSA) has been widely used as a protein model in many
applications both in industry and academic research [14]. This protein is essential for
the transportation of hormones and fatty acids in mammals. BSA has an isoelectric
point at pH 4.75, and carries a negative net charge at pH 7. Wright and Thompson [15]
proposed a prolate ellipsoid model for BSA with the dimensions of 2a = 140.4 ± 4.9
Å and 2b = 2c = 41.6 ± 3.6 Å. According to structure determination by Carter et al.
[14,16] using X-ray diffraction, the three-dimensional structure of BSA is proposed
as a heart-shaped comprising three homologous domains. Röcker et al. [17] studied a
number of BSA coating FePt and CdSe/Zns nanoparticles, and found a thickness of
the protein corona of approximately 3.3 nm. In case of the interaction between BSA
and silica nanoparticles, Su et al. [18] observed by neutron reflection that a uniform
layer of the protein adsorbed at the hydrophilic silica-water interface. They suggested
that the layer thickness is always <4 nm.

The mechanics of silica nanoparticle coated with a layer of BSA, in terms of energy
calculation, may be determined using a continuous approach. Here one assumes that
discrete atomic arrangements can be replaced by a uniform atomic distribution, so
that the total interaction energy between two molecules can be evaluated using an
integral technique. In the case of interaction energy between nano-structures, Girifalco
et al. [19,20] applied the continuous approach to analytically derive the potential
energies for various arrangements of a carbon nanotube and a C60 fullerene. This
continuous approximation can also be used to determine the interaction energy between
an organic molecule, C60 fullerene, and a biological structure, lipid bilayer, as proposed
by Baowan et al. [21] where they studied the location of fullerene penetrating to the
DPPC lipid bilayers. Recently, the authors utilized the same method to study the
encapsulation of silica nanoparticles in liposomes [22].

By using techniques from applied mathematics, this paper aims at determining a
number of protein molecules coating silica nanoparticles of different sizes. We account
for electrostatic interactions by a Coulombic term and by the Born equation for the
solvation free energy, where they are detailed in Sect. 2. Further, we utilize the Lennard-
Jones potential function for the van der Waals interaction. The model formulation for
the BSA surrounding the silica nanoparticles is presented in Sect. 3 followed by the
numerical results. Finally, the summary is presented in Sect. 5.
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2 Method

Here, we determine the optimal number of proteins in a monolayer coating a sliica
nanoparticle. Instead of using complicated force fields, we employ the continuous
approach for modeling the total non-bonded energy. Both van der Waals and electro-
static interactions are taken into account.

The standard 6–12 Lennard-Jones function is given by
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where ρ denotes the distance between two typical points, and A and B are attractive
and repulsive Lennard-Jones constants, respectively.

The electrostatic energy for molecules carrying partial charges can be modeled
using the sum of Coulombic function and Born equation to account for the solvation
energy [23] which is given by

U = qi q j

4πε0εr

1

ρ
− 1

8π

(
1

εi
− 1

εr

)
qi q j

fG B
,

where ρ denotes the distance between two typical charge centers, qi and q j are partial
point charges, ε0 denotes the vacuum permittivity of 8.85 × 10−12 CV−1m−1, and
εi and εr are relative dielectric constants. The generalized Born equation ( fBG) is

given by fG B =
√

ρ2 + a2e−ρ2/(4a2) where a is the van der Waals radius of a charged
particle, and for ρ � a we may approximate fG B = ρ. Therefore, the electrostatic
term becomes
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where we take εi = 1.
Using the continuous approach, where the atoms at discrete locations of the mole-

cule are averaged over a surface or a volume, the molecular interatomic energy is
obtained by calculating integrals over the surface or the volume of each molecule,
which is given by

E = η1η2
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where η1 and η2 represent the average surface or the average volume density of atoms
on each molecule. For convenience, we define

In =
∫

S2

∫
S1

ρ−2nd S1d S2, (1)

where n = 1/2, 3 and 6 correspond to the degree of ρ that appears in the above energy
equation.
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Table 1 Lennard-Jones and
Coulombic parameters for silica
nanoparticle used in this model

Atom type ε (kJ/mol) σ (nm) q (C) Dangling atom
density (nm−2)

Si 1.297 0.4295 +0.3|e| 1.0

O 0.628 0.3500 −0.3|e| 1.0

Table 2 Lennard-Jones
parameters for BSA used in this
model

Atom type ε (kJ/mol) σ (nm) Number of atoms
in one molecule

C 0.0951 0.30275 3,072

H 0.0512 0.28464 4,828

N 0.0774 0.32626 816

O 0.0957 0.30332 928

S 0.3440 0.35903 40

The Lennard-Jones and Coulombic constants for silica nanoparticle are taken from
the work of Cruz-Chu et al. [24] and are listed in Table 1. Here, SiO2 is modeled as
a perfect spherical molecule where the Si atom is located at the center and the bond
length between Si and O is 0.161 nm. Then the average atomic surface density of
silica may be obtained as 3/[4π(0.161)2] = 9.325 nm−2, where 3 is the number of
atoms in a molecule. Similarly, the average atomic volume density of silica is given
by 3/[(4/3)π(0.161)3] = 171.61 nm−3. Further, it is assumed to be comprised at the
inside of small overall neutral SiO2 beads whereas the outer surface of the solvated
nanoparticle is partially covered by silanol (–SiOH) groups [24,25]. Following the
work of Cruz-Chu et al. [24], the density of the dangling atoms of silicon and oxygen
are approximately 1 nm−2. Therefore, to guarantee the neutral charge of the silica
nanoparticle, the partial charges for the silicon atoms and hydroxyl groups are taken
to be +0.3|e| and −0.3|e|, respectively.

We model the BSA protein as an ellipsoid with dimensions of 14 × 4 × 4 nm [15].
This gives a volume of 117.29 mn3 for one protein molecule. The BSA molecule
comprises of 9,684 atoms in total, and therefore the average atomic volume density
of the BSA is 82.57 atoms per cubic nanometer. The electrostatic interactions of pro-
teins are mostly due to polar and charged amino acids on the surface. According to
the assumed ellipsoidal shape, the surface area of such a BSA molecule is approxi-
mately 142.31 nm2, then the average atomic surface density of the BSA is 68.05 nm−2.
Here, we vary the charge of the BSA to represent the pH or ion concentration in an
environment. The Lennard-Jones parameters for the atomic components of BSA are
taken from the work of Mayo et al. [26], and are presented in Table 2. Mixing rule is
employed to study the interaction between two atomic types.

3 Model formulation

According to Röcker et al. [17] and Su et al. [18], BSA forms a monolayer when
surrounding nanoparticles. Here, we assume that the protein forms layer of �nm thick-
ness surrounding a spherical nanoparticle of radius a, where � ranges from 4 to 14 nm
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probability distribution of Si

probability distribution of OH

a + 0.161

a

single protein molecule

b

outer most radius of protein ring
b + nm

Fig. 1 Model formation for silica nanoparticle coated by BSA where b is the inner most ring radius and �

is the thickness of the ring which ranges from 4 to 14 nm

corresponding to the dimensions of a BSA molecule. The silica nanoparticle is assumed
to be centered at the origin as shown in Fig. 1. Therefore, the total energy of the system
consists of

1. The van der Waals energy between the volume of the spherical protein ring and the
volume of the spherical nanoparticle.

2. The electrostatic energy between the surface of the protein ring and the surface of
the nanoparticle arising from the silica atoms and hydroxyl groups.

The volume of the protein ring around the nanoparticle Vlayer is given by

Vlayer = 4

3
π

[
(b + �)3 − b3

]
,

where b denotes an inner most radius of the protein ring which needs to be determined
as a solution of the problem. It can be shown that a volume of an ellipsoid of dimensions
2a × 2b × 2b is approximately two thirds of a volume of a cylinder with the height
of 2a and the diameter of 2b. Accordingly, the amount of the protein molecule in
the spherical protein ring is approximately 2Vlayer/3. Therefore, the number of BSA
molecules coating the silica nanoparticle can be determined by

Np = 2Vlayer

3Vp
= 2[(b + �)3 − b3]

3(2)(2)(7)
= (b + �)3 − b3

42
, (2)

where Vp is the volume of one BSA molecule.
The schematic models for the van der Waals and the electrostatic interactions are

depicted in Fig. 2. We firstly determine the molecular interaction between a surface
or a volume of a sphere and a single atom as shown in Fig. 2a. Then, the single
atom is assumed to be located on the other spherical surface, and either volume or
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a

(a) (b)

b

(rcos sin , rsin sin , rcos )

a
(0,0,0)

(acos sin , asin sin , acos )
(bcos sin , bsin sin , bcos )

b

(c)

a

Fig. 2 Schematic structures for a a sphere interacting with a single atom, b concentric spheres for the outer
volume integral, and c concentric spheres for the outer surface integral

surface integral is applied to determine the total energy of the system. Mathematical
derivations for the van der Waals and the electrostatic interactions using in this model
are presented in Sects. 3.1 and 3.2, respectively.

3.1 Van der Waals interaction

We begin by considering the integral In defined by (1) for n = 3, 6 and for a spherical
molecule of radius a centered at the origin and a point located at (0, 0, δ), as shown
in Fig. 2a. The distance from a typical element of the sphere to the atom is given by
ρ2 = (r cos θ sin φ)2+(r sin θ sin φ)2+(r cos φ−δ)2, r ∈ [0, a]. Following the work
by Baowan and Thamwattana [27], it is convenient to express the volume integral I3
and I6 in terms of Jn which is defined by Jn = 1/(δ2 − a2)n where n is a positive
integer corresponding to the power of the polynomials appearing in I3 and I6 defined
by (3) and (4), respectively. This gives

I3[Jn] = 4

3
πa3 J3, (3)

I6[Jn] = 2

45
πa3

(
30J6 + 216a2 J7 + 432a4 J8 + 256a6 J9

)
. (4)

Next, we need to evaluate the volume integral for the outer spherical ring where
the schematic model is shown in Fig. 2b. The distance δ from the center of the first
sphere to a typical point on the spherical ring is given by δ = r and, therefore we may
deduce

L L J
n =

∫
V

Jnd S =
∫ π

−π

∫ b+�

b

∫ π

0

r2 sin φ

(r2 − a2)n
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= 4π(−1)n
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[
1
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− 1
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]
dt, (5)

where � is the thickness of the ring, and for any given value of n, an analytic expression
of L L J

n can be obtained. The total van der Waals interaction between the sphere and the
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spherical ring of thickness � can be obtained by substituting L L J
n defined by (5) into

I3 and I6 defined by (3) and (4), respectively. Therefore, the van der Waals interaction
between the spherical molecule of radius a and the spherical ring of thickness � is
given by

P1−2 = η1η2

{
−A1−2

(
4

3
πa3L L J

3

)
+ B1−2

[
2

45
πa3

(
30L L J

6 + 216a2 L L J
7

+ 432a4L L J
8 + 256a6L L J

9

)]}
, (6)

where η1 and η2 represent the average atomic volume densities of the sphere and the
protein ring, respectively, and A1−2 and B1−2 are the Lennard-Jones attractive and
repulsive constants, respectively.

Hence, the total van der Waals interaction between the spherical silica nanoparticle
and the ring of the BSA with thickness � is given by
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, (7)

where P1−2 is defined by (6). The rational coefficients come from the proportional
content of 1/3 silicon and 2/3 oxygen atoms in the silica nanoparticle. By the same
consideration the atomic proportions for the BSA can be obtained, this yields the value
of 9684 in the denominator.

3.2 Electrostatic interaction

For this we consider the integral In defined in Eq. (1) with n = 1/2. In the case of a
spherical surface interacting with a single atom, as depicted in Fig. 2a, we may deduce

I1/2 =
∫

s

1

ρ
d S =

∫ π

−π

∫ π

0

a2 sin φ

(a2 + δ2 − 2aδ cos φ)1/2 dφdθ

= πa

δ

∫ (δ+a)2

(δ−a)2

1√
t
dt

= 4πa2 1

δ
, (8)

where δ is the distance from the center of the sphere to the atom.
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Next we aim to integrate 1/δ over another concentric spherical structure. As shown
in Fig. 2c, we have δ = b, and we may deduce

L Q
1/2(a, b) = 4πa2

∫
S

1

δ
d S = 4πa2

∫ π

−π

∫ π

0

b2 sin φ

b
dφdθ = 16π2a2b. (9)

Then the electrostatic interaction between two concentric spheres is given by

Q1−2 = 4πη∗
1η∗

2q1q2

[
1

εrε0
− 1

2

(
1 − 1

εr

)]
a2b, (10)

where in this case η∗
1 and η∗

2 are the average atomic surface densities of the nanopar-
ticle and the protein molecule, respectively. Hence, the total electrostatic interaction
between the ring of BSA and the surface of the silica nanoparticle arising from the
two layers of silica atoms and hydroxyl groups can be deduced

Eelec = 4πη∗
1η∗

2q2

[
1

εrε0
− 1

2

(
1 − 1

εr

)] [
0.3|e|a2b − 0.3|e|(a + 0.161)2b

]
,

(11)
where q2 denotes the total charge of the BSA. Here, the probability distribution of
silica atoms is assumed to be on the spherical surface of radius a and the probability
distribution of hydroxyl group is assumed to be on the spherical surface of radius
a + 0.161 nm.

4 Numerical results and discussion

Due to the unknown BSA charge q2, here we assume three possible negative charge
values which are −0.1|e|,−0.3|e| and −0.5|e|. This is from the fact that BSA carries
a negative net charge at pH 7. The dielectric constant εr is taken to be 80 as the
relative permittivity of water. We note that the value of εr does not effect the physical
behaviour of the system [22]. The electrostatic energy profiles for the three negative
charge values are shown in Fig. 3. We found that increasing the magnitude of the
charge increases the magnitude of the electrostatic energy in the system. The positive
total energy comes from the repulsion between the assumed negative charge of the
protein and the negative charge of the hydroxy group. Further, we found that the value
of the electrostatic energy has three orders of magnitude lower than the value of the
van der Waals energy. Therefore, only the van der Waals interaction is needed in order
to determine the optimum ring radius b.

The summation of the van der Waals and the electrostatic energies given in (7) and
(11) gives rise to the total energy of the system. Figure 4 shows an energy profile for
the specific value of the silica nanoparticle radius a = 15 nm at the isoelectric point.
We obtained the optimum radius of the inner ring at b = 15.37 nm. The other sizes of
silica nanoparticles give the same energy behaviors, and they are not shown here.

A number of BSA molecules surrounding the silica nanoparticle can be calculated
by the relation given by (2). The radius of the protein ring b is determined at the
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Fig. 3 Electrostatic energy for three different negative charge values on BSA for silica nanoparticle of
radius 15 nm coated by BSA
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Fig. 4 Total energy at an isoelectric point of silica nanoparticle of radius 15 nm coated by BSA

equilibrium position, and their values for five different sizes of silica nanoparticles
are given in Table 3. We assume three values for the ring thickness � arising from
the maximum, average and minimum dimensions of a BSA molecule, which are 14,
7.33 and 4 nm, respectively. We found that the number of protein molecules coating
the nanoparticles is independent of the charge values on BSA. Moreover when � is
assumed to be 4 nm, our result for the case of a = 5.6 nm is in a good agreement
with the number given by Röcker et al. [17] where we predict that there are 21 BSA
molecules surrounding the nanoparticle and they obtained 23 molecules coating the
nanoparticle. Further, 4 nm is also represented the protein thickness surrounding the
silica nanoparticle as proposed by Su et al. [18].
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Table 3 Numerical results for
the inner most radius b of BSA
and a number of proteins Np
coating silica nanoparticle

a (nm) Inner most
radius b (nm)

Number of proteins Np

� = 14 nm � = 7.33 nm � = 4 nm

5.6 5.974 187 54 21

10 10.374 331 119 57

15 15.374 560 235 130

20 20.374 866 406 244

25 25.374 1,259 638 409

The main result of this paper is the derivation of an analytical expression for the total
energy of the system as a function of a spherical core radius. The silica nanoparticle is
introduced here as a model particle to illustrate the physical properties such as size and
charge. Once the particle type is replaced by another material, only the parameters and
constants need to be changed, but the mathematical expressions derived here remain
the same. Similarly, the type of a protein molecule can be changed and only the
proportion of atomic species are needed to be adjusted. Furthermore, the calculation
of a number of protein molecules loading on the nanoparticle can be easily modified
utilizing different geometries of the protein molecules.

5 Summary

A quantitative determination of BSA monolayer coating on a silica nanoparticle sur-
face is studied here, which might be thought of as a delivery process of biomolecules
on the nanoparticle as a targeted drug cargo. Both van der Waals and electrostatic
interaction energies are taken into account utilizing the Lennard-Jones potential and
the Coulombic potential including Born equation. The continuous approach, where
the atoms in a molecule are assumed to be uniformly distributed over a surface or
a volume of the molecule, is employed to determine the total energy of the system.
Then the surface and the volume integral techniques are utilized to analytically express
the model calculations. In this study, we assume that the silica nanoparticle can be
modeled as a perfect sphere whereas the BSA can be represented by an ellipsoid.

Due to an unknown charge on the protein molecule, we assume three possible
negative charge values which are −0.1|e|,−0.3|e| and −0.5|e|. The total interaction
energy for the silica nanoparticle coated by BSA is obtained as a function of the
nanoparticle size and the charge of the protein. The solution of the problem is the inner
most radius of the protein ring which will be used to determine the quantity of the
protein surrounding the nanoparticle. Three values of ring thickness � are assumed.
Further, we found that the number of protein molecules on the silica nanoparticle
cannot be explained by charge effects and Coulomb interaction, it depends on the van
der Waals interaction alone. Moreover, the results obtained here are comparable with
the ones obtained in experiments. Our work thus could be viewed as a first step toward
designing cargo to load the biomolecules on the organic nanoparticle.
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